Overcoming Endurance Issue: UAV-Enabled Communications with Proactive Caching
نویسندگان
چکیده
Wireless communication enabled by unmanned aerial vehicles (UAVs) has emerged as an appealing technology for many application scenarios in future wireless systems. However, the limited endurance of UAVs greatly hinders the practical implementation of UAV-enabled communications. To overcome this issue, this paper proposes a novel scheme for UAV-enabled communications by utilizing the promising technique of proactive caching at the users. Specifically, we focus on content-centric communication systems, where a UAV is dispatched to serve a group of ground nodes (GNs) with random and asynchronous requests for files drawn from a given set. With the proposed scheme, at the beginning of each operation period, the UAV pro-actively transmits the files to a subset of selected GNs that cooperatively cache all the files in the set. As a result, when requested, a file can be retrieved by each GN either directly from its local cache or from its nearest neighbor that has cached the file via device-to-device (D2D) communications. It is revealed that there exists a fundamental trade-off between the file caching cost, which is the total time required for the UAV to transmit the files to their designated caching GNs, and the file retrieval cost, which is the average time required for serving one file request. To characterize this trade-off, we formulate an optimization problem to minimize the weighted sum of the two costs, via jointly designing the file caching policy, the UAV trajectory and communication scheduling. As the formulated problem is NP-hard in general, we propose efficient algorithms to find high-quality approximate solutions for it. Numerical results are provided to corroborate our study and show the great potential of proactive caching for overcoming the limited endurance issue in UAV-enabled communications.
منابع مشابه
UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization
This paper studies a new unmanned aerial vehicle (UAV)-enabled wireless power transfer (WPT) system, where a UAV-mounted mobile energy transmitter (ET) is dispatched to deliver wireless energy to a set of energy receivers (ERs) at known locations on the ground. We investigate how the UAV should optimally exploit its mobility via trajectory design to maximize the amount of energy transferred to ...
متن کاملUAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design
With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of s...
متن کاملPower Control in UAV-Supported Ultra Dense Networks: Communications, Caching, and Energy Transfer
By means of network densification, ultra dense networks (UDNs) can efficiently broaden the network coverage and enhance the system throughput. In parallel, unmanned aerial vehicles (UAVs) communications and networking have attracted increasing attention recently due to their high agility and numerous applications. In this article, we present a vision of UAV-supported UDNs. Firstly, we present f...
متن کاملMeasuring and Troubleshooting the Internet: Algorithms, Tools and Applications
IEEEE JSAC Special Issue on Measuring and Troubleshooting the Internet: Algorithms, Tools and Applications The ubiquity of Internet access, and the wide variety of Internet-enabled devices and applications, have made the Internet a principal pillar of the Information Society. However, its distributed nature leads to operational brittleness and difficulty in identifying and tracking the root cau...
متن کاملCaching Policy for Cache-enabled D2D Communications by Learning User Preference
Prior works in designing caching policy do not distinguish content popularity with user preference. In this paper, we optimize caching policy for cache-enabled device-to-device (D2D) communications by exploiting individual user behavior in sending requests for contents. We first show the connection between content popularity and user preference. We then optimize the caching policy with the know...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.03542 شماره
صفحات -
تاریخ انتشار 2017